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1 Introduction of Basic Linear Non-Gaussian Acyclic Model 
1.1 Linear Non-Gaussian Acyclic Model 

The Linear Non-Gaussian Acyclic Model is a way to estimate the 

connection strength and causal order based on only observed data. In 

contrast to the other methods, the LiNGAM approaches (Shimizu et al, 

UAI2005, 2006 JMLR) 1  can replace the Gaussian assumption by 

Non-Gaussian assumption. Moreover, we can identify the connection 

strength and structure.  

A model with assumptions, the error variables are independent, 

non-Gaussian probability density function,and the causal relation is acyclic, 

is called the model Linear Non-Gaussian Acyclic Model (LiNGAM). 

1.2 Model 

The LiNGAM model with matrix form is 

𝒙 = Β 𝒙 +  𝒆  (2) 

,where 𝒙 and 𝒆 collect the observed variable 𝑥! and  𝑒!, and Β collects 
the causal connection strength 𝑏!", respectively.                      

The LiNGAM is identifiability which means that the connection strength 

matrix B can be uniquely identified based only on the observed data matrix 

𝒙 . To show the property of identifiability, the following graphs and 

simulations showed the difference between two models, which are the same 

strength of the causal connection but different arrows of causal connection. 

First, generating 2 observed random variables with sample size 5000 from 

Model (1). Assuming the strength of the causal connection is 0.8, the 

non-Gaussian possibility density function of error is assumed uniform 

distribution, and arrows of causal connection are opposite. Second, plotting 

the simulated data where x1 lies on x-axiom and x2 lies on y-axiom. The 
																																																								
1	 Pairwise Likelihood Ratios for Estimation of Non-Gaussian Structural Equation Models, Aapo Hyvärinen (2013) Journal of 
Machine Learning Research 14 (2013) 111-152 Submitted 10/11; Revised 8/12; Published 1/13 
	

𝑥! = ∑ 𝑏!"𝑥!!(!)!!(!) + 𝑒!   (1) 

                      𝑥!   ∶ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
                      𝑏!" ∶ 𝑡ℎ𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑢𝑠𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑥!  𝑡𝑜 𝑥!   

                                with a causal ordering denoted by 𝑘(𝑖) 
                       𝑒! ∶ 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑎𝑛𝑑 𝑛𝑜𝑛 − 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

                              𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠, 𝑖 = 1,2,…… , 𝑝 
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Figure (1). showed the different shape of graphs and 5 simulated 

observations. Even though they have equal strength of the causal 

connection, both of them still have different arrows of causal connection 

and shapes. That is because they have the property of identifiability.    

                                  𝑥!
!.!
𝑥!                                                      𝑥!

!.!
𝑥!  

                                 𝑥! = 𝑒!                                                       𝑥! = 𝑒! 
                                 𝑥! = 0.8𝑥! + 𝑒!                                       𝑥! = 0.8𝑥! + 𝑒!                  

 

 

 

 

 

 

 

 

 

 

Figure (1).  

2 Basic LiNGAM in Boston Housing Data 
2.1 Introduction of Boston Housing Data 

Boston Housing data contains information collected by the U.S Census 

Service concerning housing in the area of Boston Mass. In this dataset, they 

measured multiple factors, which may affect the housing prices in different 

neighborhoods in the Boston area. The dataset has 506 observations with 14 

variables. The 14 variables are CRIM, ZN, INDUS, CHAS, NOX, RM, 

AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, MEDV, respectively. 

Here are the 14 variables in Detail: 

CRIM: per capita crime rate by town 

ZN: proportion of residential land zoned for lots over 25,000 sq. ft 

INDUS: proportion of non-retail business acres per town  

CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)  

NOX: nitric oxides concentration (parts per 10 million)  

RM: average number of rooms per dwelling  

AGE: proportion of owner-occupied units built prior to 1940  

DIS: weighted distances to five Boston employment centers  
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RAD: index of accessibility to radial highways  

TAX: full-value property-tax rate per $10,000  

PTRATIO: pupil-teacher ratio by town  

B: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town  

LSTAT: % lower status of the population  

MEDV: Median value of owner-occupied homes in $1000's 

Table (1). 4 samples of Boston Housing Data 

2.2 Estimate the causal effect 

To know the relation between those 14 variables, I used the Pairwise 

LiNGAM 2  (Aapo Hyvärinen, 2013) to estimate the causal connection 

strength. 

Pairwise LiNGAM is an approach, which can measure the causal direction 

and causal effect between two non-Gaussian random variables. This 

approach uses the likelihood ratio between two non-Gaussian random 

variables to estimate the causal direction and causal effect. Among this 

method, the log likelihood is given by (Hyvärinen et al., 2010) as   

log 𝐿(𝑥 → 𝑦) = [ 𝐺!(𝑋!)! + 𝐺!(
!!!!!!
!!!!

)] − 𝑇log(1 − 𝜌!)  and the likelihood 

ratio is 𝑅 = !
!
log𝐿(𝑥 → 𝑦) − !

!
log𝐿(𝑥 ← 𝑦). Hence, if R is positive, the causal 

direction will be x to y. On the other hand, if R is negative, the causal direction 

will be y to x. 

2.3 Problem in Boston Housing Data 

In the Boston Housing Dataset, there is a categorical variable—CHAS. 

However, if we want to apply the LiNGAM on the Boston housing data to 

estimate the causal effect, the variables must be continuous random 

variables under LiNGAM assumptions. Therefore, we need to figure out 

how to let the Boston Housing Data be workable on LiNGAM. 	
According to paper--Bayesian Networks for Variable Groups (Pekka 

Parviainen, 2015)3--, they used another method to estimate the casual 

																																																								
2Pairwise Likelihood Ratios for Estimation of Non-Gaussian Structural Equation Models, Aapo Hyvärinen (2013). Journal of 
Machine Learning Research 14 (2013) 111-152 Submitted 10/11; Revised 8/12; Published 1/13	
3	 Bayesian Networks for Variable GroupsP Parviainen, S Kaski (2015)arXiv preprint arXiv:1508.07753	
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direction in Boston Housing Data. In this paper, they found that the 

variable-CHAS—did not have any causal effect to other variables. 

Although they applied the different method to estimate the cauls direction, I 

still can estimate the causal effect based on such result. Therefore, I 

eliminate the CHAS variable from dataset. The dataset become 506 

observations with 13 variables. In the following application, I will continue 	
to use dataset which have only 13 variables to apply on the research. 

 

Figure (2). 

2.4 Measuring the causal direction 
Likelihood Ratio Matrix 

Table(2). 

In the Table (2), we can see that the value in the 2nd row and 1st column is 0.233. 

Because 0.233 is positive, we can say that RAD has the causal effect to DIS. 

Similarly, the value in the 4th row and 1st column is -0.011which is negative. 

Therefore, we can say that DIS has the causal effect to INDUS. 

 

 

DIS RAD ZN INDUS RM AGE B LSTAT CRIM NOX PTRATIO MEDV TAX

DIS 0 -0.233 -0.46 0.0113 0.0084 -0.161 -0.294 -0.016 -0.09 0.0639 0.0605 0.0924 -0.132

RAD 0.2333 0 -0.092 0.6165 0.055 0.2195 -0.632 0.3529 0.9484 0.5884 0.2496 0.3369 0.2212

ZN 0.46 0.0924 0 0.4268 0.2175 0.4996 -0.056 0.3299 0.0471 0.4585 0.2179 0.265 0.0988

INDUS -0.011 -0.616 -0.427 0 -0.009 -0.02 -0.422 0.0462 0.2321 0.001 0.1091 0.191 -0.444

RM -0.008 -0.055 -0.218 0.009 0 -0.029 -0.018 -0.029 -0.053 0.0186 0.0041 -0.06 -0.013

AGE 0.1612 -0.219 -0.5 0.0202 0.0286 0 -0.235 0.1121 -0.033 0.0966 0.1099 0.2509 -0.073

B 0.2936 0.6317 0.0562 0.4223 0.018 0.2352 0 0.463 0.3904 0.4581 0.158 0.4952 0.6688

LSTAT 0.0163 -0.353 -0.33 -0.046 0.0293 -0.112 -0.463 0 0.1724 0.0248 -0.026 0.0852 -0.215

CRIM 0.09 -0.948 -0.047 -0.232 0.0533 0.0327 -0.39 -0.172 0 -0.24 0.074 0.3797 -0.705

NOX -0.064 -0.588 -0.458 -1E-03 -0.019 -0.097 -0.458 -0.025 0.2402 0 0.0332 0.1401 -0.36

PTRATIO -0.06 -0.25 -0.218 -0.109 -0.004 -0.11 -0.158 0.0264 -0.074 -0.033 0 -0.01 -0.081

MEDV -0.092 -0.337 -0.265 -0.191 0.0604 -0.251 -0.495 -0.085 -0.38 -0.14 0.0099 0 -0.279

TAX 0.1319 -0.221 -0.099 0.4437 0.0129 0.0725 -0.669 0.2153 0.7047 0.3595 0.0814 0.2788 0
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3 LiNGAM in Groups of Variables 
Although we have already used Pairwise LiNGAM to measure the causal 

direction between 13 random variables of Boston Housing Data, there is still left 

something to be desired. 

If we just consider the causal effect between each single variable, some 

information will loss. Take the fMRI data as an example, in previous studies, 

aggregated data in fMRI – measurements of brain activities – have already been 

used to find the causal relations of single variables using the pairwise-LiNGAM. 

However, some information that we may not notice will loss because variables 

that form brain regions sometimes are heuristic averaged to single variables and 

this could lead to a serious bias when uncovering connections. Therefore, I want 

to extend the LiNGAM to the groups of variables and to receive the information 

that we uncover.  

3.1 Groups of Variables 

We denote group as the set of variables which all belong to the same 

random vector and denote the variable as a single random variable which 

belongs to one of the groups. How groups be organized is based on the 

background knowledge. Therefore, I will not discuss which variables 

belong to what groups in this report.  

Take the Boston Housing Data as an example, according to Pekka 

Parviainen (2015)4; they divided the variables into 9 groups. Some of 

groups have only one variable but this will not affect the application of 

groups.  

 

Figure (3). Group information of Boston Housing Data 

																																																								
4	 Bayesian Networks for Variable GroupsP Parviainen, S Kaski (2015)arXiv preprint arXiv:1508.07753	
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3.2 Model 

Let 𝜒! denote group 𝑔, and let the random vector 𝜒! = (𝜒!
(!),… ,𝜒!!

(!))!  

which has 𝑛!variables in group 𝑔. Assume the group can be arranged in 

the causal order 𝐾 = (𝑘!,… , 𝑘!) . All variables in 𝜒! are observed, 
and the grouping of these variables is known.  
 
 

 

 

 

 

 
4 Simulation in Groups of Variables 

To know more about how groups of variables work on different LiNGAM 

methods, here are two simulations to display the comparison of three LiNGAM 

methods with different number of variables in each group. The simulation is 

based on the Entner’s method (2012)5. According this paper, they estimate the 

causal order by regressing out the exogenous group of all groups. The exogenous 

group mean that if Xi is exogenous group, then for all Xj, which i is not equal to j, 

Bj,i are zero.  

About the simulations, the first simulation Figure (4) is 5 grouped variables with 

6 variables in each group and Figure (5) is 5 grouped variables with 12 variables 

in each group. We simulated three different sample sizes: 200, 500, 1000 and 

repeat 100 times. Finally, observe the error rate of result in different LiNGAM 

methods. The three LiNGAM methods are Group Directed LiNGAM, Pairwise 

LiNGAM, and Group ICA LiNGAM, respectively.  

The simulation process is that at first, I generated a random dataset based on the 

known groups information under non- Gaussian distribution. In the generation 

data, I have already given a correct causal ordering for each dataset. After that, I 

only applied the information of random dataset to estimate the causal order by 

using LiNGAM methods. Finally, comparing the result with correct causal 

																																																								
5 Estimating a causal order among groups of variables in linear models, Doris Entner(2012) ICANN’12 Proceedings of the 22nd 
international conference on Artificial Neural Networks and Machine Learning- Volume PartII Pages84-91 
	

xki = Bkikj xkj
j<i
∑ + eki ,  i =1,...,G

Bkik j
:  aribtrary matrics of dimension nki

× nk j
,  containing 

            the dircet effects from groups xki
 to xk j

.

eki
   :  assume to be zero mean, and mutually independent over groups,

             but allowed to be dependent within each group.

(3) 



	 9	

ordering. If the result is the not equal to the real causal ordering, it will be an 

error. After repeating the 100 times, calculating the proportion of errors from 

every LiNGAM method in each simulation. At last, plotting the group shows in 

Figure (4) and Figure (5). From the Figures, we can know that the group ICA 

LiNGAM always has highest error rate. When the sample size increased, the 

error rate decreased in the Group Directd LiNGAM. About the Pairwise 

LiNGAM method, Pairwise LiNGMA has the lowest error rate in each simulation 

 
 

 
 
 
 
 

 
 

             Table (4).                         Figure (4).   

 
 

 
 
 
 
 

 
 

             Table (5).                        Figure (5).   

 
5 Boston Housing Data in Groups of Variables 

According to the above simulation, the Pairwise LiNGAM provides more precise 

estimation to the causal order. In the following section, I will apply the Pairwise 

LiNGAM on the real data—Boston Housing Data—which I used on the previous 

section to estimate the causal effect under groups of variables.  

In the Section 3.1, I have already had the group information of Boston Housing 

Data (Consider the Figure (3)). I will use such group information to estimate the 

   Error Rate 
Sample 
Size 

Group 
Directed 

LiNGAM 

Group ICA 
LiNGAM 

Pairwise  
LiNGAM 

200 0.397 0.151 0.049 

500 0.388 0.022 0.008 

1000 0.349 0.009 0.002 

   Error Rate 
Sample 
Size 

Group 
Directed 

LiNGAM 

Group ICA 
LiNGAM 

Pairwise  
LiNGAM 

200 0.401 0.183 0.020 

500 0.371 0.03 0.004 

1000 0.384 0.004 0 
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causal order within groups of variables.  

In this section, I would explain the Boston Housing Data’s group information in 

detail and apply such group information to the LiNGAM. 

5.1 Groups of Variable in Boston Housing Data 

Boston Housing Data has 13 single variables and 506 samples. According 

to the Pekka Parviainen (2015)6, the group information of Boston Housing 

Data is separated into 9 groups. Every group can have different number of 

variables or can be single variables. The organizations of groups are: Group 

Accessibility consisted of variables CHAS, DIS, and RAD; Group Zoning 

consisted of variables ZN and INDUS; Group Apartment properties 

consisted of variables RM and AGE; Group Population consisted of 

variables B and LSTAT. Five of our groups consisted of one variable: 

Crime of CRIM, Pollution of NOX, Education of PTRATIO, House prices 

of MEDV, and Taxes of TAX. (Consider the Figure (3)) 

5.2 Model of Groups of Variables 

Regarding to the groups of variables, I need to seem the groups of variables 

as the vector and the equation for each groups is in Equation (3). If we 

arrange the groups in a causal order 𝑲 = (𝒌𝟏,… ,𝒌𝑮)  and define 
𝒙 = (𝒙𝒌𝟏 ,𝒙𝒌𝟐 , . . ,𝒙𝒌𝑮)  and 𝒆 = (𝒆𝒌𝟏 , 𝒆𝒌𝟐 , . . , 𝒆𝒌𝑮) , we can change the 

Equation(3) into the matrix form: 𝒙 = 𝑩𝒙+ 𝒆 where 𝑩 is a lower block 

triangular matrix. According to this model, we need to estimate the causal 

order. Assume that the number of single variable in each group is 
𝒏 = (𝒏𝒌𝟏 ,𝒏𝒌𝟐 , . . ,𝒏𝒌𝑮). 𝑰n the matrix 𝒙, the Boston Housing Data would be 

a 13x506 matrix and the 1st  𝒏𝒌𝟏  row correspond to group 𝒙𝒌𝟏,..., the last 

𝒏𝒌𝑮 row corresponds to group 𝒙𝒌𝑮.  

 

5.3 About the ParceLiNGAM 

At the first, I applied the Pairwise LiNGAM based on Entner’s method7 

and Equation (3). However, in this method, they did not provide a 

completed method to estimate the causal measure and find the connection 

strength B. To have better estimation, I combined another LiNGAM 

																																																								
6 Bayesian Networks for Variable Groups Parviainen, S Kaski (2015) arXiv preprint arXiv:1508.07753 
7 Estimating a causal order among groups of variables in linear models, Doris Entner (2012)  ICANN’12 Proceedings of the 
22nd international conference on Artificial Neural Networks and Machine Learning- Volume PartII Pages84-91 
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(5) 

) 

model—ParceLiNGAM8—to modify the original method and hope the 

estimation can be workable. The model (4) is called ParceLiNGAM which 

has an additional condition f which is call latent confounder. 

 

 

 

The original purpose of this model is to prevent the wrong estimation if the 

LiNGAM assumptions is violated. Latent confounder is a variable which is 

not observed but exerts a causal influence on some of the observed 

variables. Therefore, to prevent the wrong estimation of connection 

strength and violation of assumption, I extended this model and modify the 

Entner’s method to adjust the way I used on estimating the causal 

inference.  

The reason why I can apply this model is the algorithm is this model is 

suitable to extend to groups of variable and also can estimate the 

connections strength. According to the algorithm3 step 6, “ Estimate 
connection strengths 𝑏!" if all the non-descendants of 𝑥! are estimated, i.e. 

the i-th row of C has no zero. This can be done by doing multiple 
regression of 𝑥!  on all of its non-descendant 𝑥!  with 𝑘 (𝑗) < 𝑘(𝑖)”, 

although this algorithm did not assume groups of variable, this algorithm 

can be applied to Entner’s method as well.  

																																																								
8 ParceLiNGAM: A Causal Ordering Method Robust Against Latent Confounders, Tatsuya Tashiro ,(2013) Neural Compute. 
2014 Jan;26(1):57-83. doi: 10.1162/NECO_a_00533. Epub 2013 Oct 8. 
	

x = Bx +Λf + e
B  :  connection strength matrix
e    :  assume to be zero mean, and mutually independent
Λ   :  the connection strength λ  from latent confounder f to x
f   : non-Gaussian latent confounding , which is an unobserved
         variable with zero mean and non-zero variance.
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(5) 

 

Figure (6). 

To extend the model (4) to the groups of variables, I modified the model 

which is suitable to apply on the groups of variables. The model (5) is the 

extended model in groups of variables. 

 

 
Rewriting the model as a matrix 

 

5.4 Causal Order in Boston Housing Data 

After adjusting the model, I extended the way to estimate the causal order. 

According to the Lemma1 from ParceLiNGAM9, I need to extended the 

																																																								
9 ParceLiNGAM: A Causal Ordering Method Robust Against Latent Confounders, Tatsuya Tashiro ,(2013) Neural Compute. 
2014 Jan;26(1):57-83. doi: 10.1162/NECO_a_00533. Epub 2013 Oct 8. 
	

xki = Bkik j xk j
j<i
∑ + Λkik j

fk j
j<i
∑ + eki ,  i =1,...,G

Bkik j
  :  matrix of dimension nki

× nk j
,  containing  the dircet effects  

              from groups x k j
to x ki

and should be permuted as lower

              triangular and be full column rank.
eki

       : assume to be zero mean, and mutually independent over groups,

              but allowed to be dependent within each group.
Λkik j

  : matrix of dimension nki
× n k j

with full column rank,containing 

              the connection strength λijfrom latent confounder f k j
to xki

.

fk j
     : existence of latent confounding of ki , which is an unobserved

              variable and has a parent of more than one observed variable
              with zero mean and non-zero variance.

x = Bx +Λf + e
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Figure (7). 

Figure (8). 

algorithm and combine with the original method to have better estimation. 

In the Entner’s method, I can estimate the causal order of K(Figure.(7)). 

However, after combining ParceLiNGAM, I need to transfer the vector K 

into C matrix (Figure (8))which used in ParceLiNGAM. Here is the 

definition of C: 

 

Here are the results: 

                     

                   

The name of groups in order with the causal order K is: Housing Prices, 

Pollution, Taxes, Crime, Education, Zoning, Apartment Properties, and 

Accessibility, respectively. 

5.5 Connection Strength in Boston Housing Data 

After estimating the causal order, I used this information to estimate the 

connection strength which is based on the model (5). The connection 

strength matrix of B is a 9x9 matrix and the dataset is a 13x506 matrix 

where the row is the number of single variables and the column is the 

number of observations. To estimate the connection strength matrix, we 

need to seem a group of variable as a vector. As a result, the matrix X in 

model (5) will be a 9x506 matrix. 

 
Table (6). 

C = [cij ],  cij :=

−1 if k(i) < k( j)
  1 if k(i) > k( j)
  0 if it is unknown whether either 
        of the two cases above (-1 or 1) is true.

⎧

⎨
⎪⎪

⎩
⎪
⎪

K = [8     6     9     5     7     2     3     4     1]

Accessibility Zoning Apartment Properties Population Crime Polluation Education Housing Price Taxes

Accessibility 0 0 0 0 0 0 0 0 0

Zoning -1.4314858 0 -1.6422317 -0.0014046 0 0 0.08244481 0 0.01695675

Apartment Properties 0.06848498 0 0 0 0 0 0 0 0

Population 3.3775789 0 -0.6805242 0 0 0 0 0 -0.2175987

Crime -0.7363962 -0.2570536 0.35655584 -0.0117934 0 0 -0.0610974 -0.179994 0.02573807

Polluation -0.0255785 0.00411339 0.00387835 -3.42E-05 -0.0003569 0 -0.0120534 -0.0025424 0.00018132

Education 0.03472113 0 -0.7496485 0.00071073 0 0 0 0 0.00540911

Housing Price -0.4753479 -0.1853837 7.03504195 0.01668541 0 0 -0.9110493 0 -0.0053513

Taxes -39.647475 0 -45.665973 0 0 0 0 0 0
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According to the Table. (6), there is the connection strength between 9 

groups of variables. For example, the Accessibility has the -1.43 causal 

effects on Zooming. 

 

6 Conclusion 
 
In this semester, I read Entner’s paper and followed its steps to do the simulation 

of the groups of variables. After receiving the results that Pairwise LiNGAM can 

have better estimation of causal order, I started to apply such method on the real 

data. 

The real data I applied is called Boston Housing Data. I tried to extend the 

LiNGAM to groups of variable and estimate the causal effect between different 

groups of variables. Boston Housing Data is a classical and simple example. In 

this dataset, I used Entner’s method and ParceLiNGAM to estimate the causal 

order and causal effect with groups of variables. I extended the model to groups 

of variables, modified the algorithm to fit into the groups of variable, and learned 

how to use MATLAB to reach the goal I wanted. During the process, I met the 

problems in the characteristics of variables in Boston Housing Data and the 

model which is not suitable to estimate the causal effect. To estimate the 

connection strength, I modified the method and combined the ParceLiNGAM. 

Finally, I estimated the causal effect in groups of variables. However, if I want to 

apply this method on the time-series data, such as fMRI dataset, there still leave 

something to be desired. According to lots of different approaches, they tried to 

have better estimation of the causal effect in fMRI data. They usually used the 

aggregated variables to estimate the causal influence but some information may 

loss. If we can apply the fMRI dataset on the groups of variable and estimate the 

causal influence, we may have more knowing about fMRI data. 
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